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Abstract

A procedure for well log acoustic velocity prediction is
formulated in a probabilistic standpoint based on the
regularized least-squares framework. This inversion
technique is aimed at solving the relevant problem of
estimating the sonic log in wells where this log is
absent. The statistical approach combines rock physics
relationships between the model and data parameters.
The maximum a posteriori estimate of the compressive
wave velocity is derived and the results are generated
from three different regularization parameters. In addition
the posterior covariance model and correlation matrices
are calculated and interpreted. The method validity is
confirmed by the analysis of well log data from the
Jequitinhonha Basin.

Introduction

A drilling program aims to estimate the formation evaluation
of a reservoir. Traditionally, it is achieved by the well
log petrophysical processing and interpretation. Thereby
borehole geophysics plays a key role in the exploration and
development of hydrocarbon reservoirs as its data can be
used to characterize the geology around the well (Serra
and Abbott, 1982). This technique is based on acquiring
high resolution data in depth near the underground strata
directly through a drilled well. In this way, in situ
informations are obtained by various kinds of probes with
different vertical resolutions and depths of investigation
from the vicinity of the borehole wells (Ellis and Singer,
2007).

The sonic acoustic well logging records the slowness of
the compressional seismic wave, also called as P-wave,
propagating through the rock layers (Bassiouni, 1994).
The P-wave velocity, which is the inverse of the slowness,
provides essential information for reservoir exploration and
development programs and therefore it is an indispensable
tool in geophysical surveys. For example, the sonic log can
be related to formation porosity and lithology. It can also
be used to support and calibrate seismic data, to estimate
mechanical rock properties and detect fractured zones and
over-pressure conditions. Therefore, the absence of this
log makes necessary the development of a technique for
predicting the P-wave sonic log.

In this work, a regularized least-squares method that uses

the theory of probability, as it is based on Bayes’ theorem,
is developed and tested on a real data set. The solution
of the inverse problem is represented as the maximum
a posteriori probability (MAP) estimate of the acoustic
velocity, which is equivalent to the most probable model
on the posterior Gaussian distribution (Mosegaard and
Tarantola, 2002). Rock physics relationships between the
model and data parameters are combined in a probabilistic
point of view in order to predict the P-wave velocity log
in two wells from Jequitinhonha Basin. The sonic well
logs are available. However they are not used in the
inversion procedure but for the purpose of validating the
methodology. The efficiency of the employed approach is
proved and quantified in terms of the relative and root mean
squared errors between the inversion outcomes and the
well sonic log.

Method

According to Tarantola (2005), the marginal posterior
probability density function related to the model o,,(m),
which gives the probabilities of all possible models, is the
product of a constant and an exponential function:

om(m) = const-exp (—J(m)) (1)

where J(m) is the objective function, so that the m that
minimizes J(m) is the solution of the inverse problem.
Besides:

ZJ(m) :(Gln7dobs)TCI_)1(G'n*dobs)Jr (2)

(m— mprior)TCi/ll (m— mprior)a

where
e G is a forward mapping linear operator that maps the
model m into the data d parameters;

e dgps is the observed data;

e Cp is the covariance matrix related to the data and the
theory. ;

o my,,r 1S the prior or reference model;

e Cy is the covariance matrix related to the model.

It is important to state that this approximation is valid when
dons and my,e are independent and all functions are built
as Gaussian distributions. Besides, a covariance matrix
is always symmetric and it measures how much each of
the posterior models vary from the mean with respect to
each other. The data and theory covariance matrix was
considered as a diagonal matrix and its elements are equal
to the variation of the caliper log data, considering the drill
bit diameter as its mean, as the caliper log offers a quality
control of all log data (Rider, 1996).
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Considering the weight matrix Wy such that Cy! =
Wnm! Wy, Equation (2) becomes

27(m) = (Wi (Gm — dops)]” + [Wat(m — mpeior)] > (3)

The model weight matrix can be represented as a
regularized model, such as Wy = R/oy. Then oy plays
the role of the regularization parameters and R was chosen
as the one dimension Laplacian operator. Therefore, the
solution of the inverse problem is given by

- 1 -1
m= (GTWEWDG+ G—ZRTR) (GTWEWpdgps+
| M 4)

— RTRmpir )

61%4 prlor)

Additionally, the posterior model covariance matrix is equal

to

- 1 -1

Cm = [GTW[T,WDG + —ZRTR} : (5)
O

The posterior model correlation matrix é?M is determined
from Cyy by the relationship:

\/ 6M(iﬁi) éjvM(]v])

A correlation matrix evaluates the degree of association
between two variables, and its elements are always
between —1 and 1. Zero correlation means that there is no
linear relationship between two models of different depths.
A perfect linear relationship happens when the correlation
coefficient is equal to 1.

Cru(i,j) = (6)

Equation (3) can be written as:
27(m) = [[rp > + [[em )%, @)

where |rp||? is the data residual and ||ry||> correspond to
the model residual. They are, respectively, given by

[rp||* = [Wp(Gm — dgns)]?, (8)
and

a1 = [War(m — mprior) ] 9

Thus the optimal oy, that minimizes J(m) is found when
there is a balance between ||rp||> and ||rp||*>. The L-curve
can be used to determine o;/".

The Wyllie’s equation (Wyllie et al., 1956) is represented
by:

1 1-
— = ﬂf + m¢. (10)
Vp vh vp

where ¢ is the rock porosity, v, is the P-wave velocity and

v’,f and v are, respectively, the P-wave velocity in the fluid
that fills the pore space and the P-wave velocity in the rock
matrix. Considering that the slowness s, is the inverse of
vp, it can be written that:

PR - (1)
— = 5.
s,j;—s’p” sﬁ—sl’;‘ P

In this way, the model m is equal to the slowness of the
P-wave. Additionally, by using the neutron porosity log and
the fluid and rock matrix slowness, dgys is built as follows:

K
1
dobs,i = ¢i + % (1 2)
s =
pil Pl
Besides, according to Equation (11), G is a diagonal matrix
so that, for each depth of investigation i, the element G(i,)
is calculated as:

(13)

The prior model is constructed using Gardner’s equation
(Gardner et al., 1974), which estimates sonic logs, from
the density log:

v, = 360p*. (14)

For a depth of investigation i:

11
vpi  360p¢

Mpriori = Sp,i =

Results

The data used in this work are from two wells (1-BAS-
68 and 1-BAS-80) located at the Jequitinhonha Basin and
they were provided by PETROBRAS. This basin is situated
in the state of Bahia. In this basin, there are thirty one
exploratory drilled wells, all located on land or in the
proximal zone.

Wells 1-BAS-68 and 1-BAS-80 have 3586 and 2586 depths
of investigations, respectively. For each of these depths,
the rock matrix slowness was defined by using lithological
data, that are related to ditch samples.

Well 1-BAS-68

According to the lithology data set of well 1-BAS-68, only
calcarenite and calcilutite are present in this well, then
limestone was considered as the rock matrix for both
lithologies. Besides water with 15% of NaCl was chosen as
the fluid present in the rock pores. Therefore, for this well,

vy = 6.40km/s and v£ = 1.50km/s (Carmichael, 1988).

The procedure outcome for three different values of oy
(0.0001, 1 and 1000) are presented along with the sonic
well log vy and the caliper log on Figure 1. From
Figure 1a it is possible to see that the predicted velocity
log is very smooth as the regularization parameter is very
small. A small oy makes the result not dependent on
the forward operator and standard deviation of data and
theory, that is perceptible when Equation (4) is analyzed.
In Figures 1b and 1c, it is visible that the estimated sonic
log and the sonic well log have the same trend and they
are quite similar. The caliper log indicates a serious
caving about 3950m. As it compromises the quality of
the data used in the procedure (the neutron porosity and
density logs), the inversion efficiency decreases and it
explains the larger differences between v;“! and v$% and

vg3 around that depth. The relative errors between the

well and the estimated sonic logs for ¢}, 0% and o;, were,
respectively, equal t0 9.76%, 3.61% and 3.65%. Additionally,
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the root mean squared errors were, respectively, equal to
0.539 km/s, 0.199 km/s and 0.201 km/s.

The posterior model covariance matrices for o}, oz, and
o3, are shown in Figures 2. The larger covariance values
are on the matrix main diagonal. Besides, for these
regularization parameters, the values outside the main
diagonal are close to zero. Therefore, the models of
different depths are almost independent of each other.
Besides, the smaller oy is, the bigger the components of
Cw are. For Figures 2b and 2c, the values outside the main
diagonal are quite small, which creates a misinterpretation
that they are diagonal matrices.

Figure 3 shows the posterior model correlation matrices
for o), o and oj,. For the three presented matrices,
the correlation is equal to 1 only where there is a
autocorrelation, i.e., the correlation of an element to itself,
what represents the components of the matrices main

diagonal. A small o), increases the correlation values.

The L-curve was calculated and 10000 regularization
parameters were tested between 0.01 and 10° and the
optimal o, was equal to 40072. The results generated by
this parameter will not be shown as the predicted sonic
log using c,‘(f’ and also the posterior model covariance
and correlation matrices were not so different from the
outcomes computed using 67, and ;).

Well 1-BAS-80

The lithology data of well 1-BAS-80 shows that this well
log contains calcilutite, marl and shale. Therefore, for
each depth of investigation, if the presented lithology is
calcilutite, shale or marl, the adopted values for v, will
be, respectively, equal to 6.4km/s, vj} = 4.8km/s and v =
6.0km/s (Carmichael, 1988). As in 1-BAS-68, it was
considered that the fluid in the rock pores is water with 15%
of NaCl.

Figure 4 shows the inversion result for three different values
of 6 (0.0001, 1 and 1000) along with the sonic well log vi¢/
and the caliper log. Once again, the outcome for a very
small regularization is very smooth, as it is visible in Figure
2a. Figures 2b and 2c show that the predicted sonic log
and the sonic well log are quite similar, even though the
caliper log present very inconstant values, which influence
the data and theory covariance matrix. The velocity peaks
present on the sonic well log is related to the lithology
calcilutite and they are also found in the estimated log. The
relative errors between the well and the estimated sonic
logs for 6}, 0%, and o}, were, respectively, equal to 12.71%,
4.43% and 4.80%. Additionally, the root mean squared
errors were, respectively, equal to 0.287km/s, 0.102 km/s
and 0.108 km/s.

The posterior model covariance matrices for ¢},, oz and
oy, are shown in Figures 5. The models of different depths
are almost independent of each other as in well 1-BAS-68
and the values outside the main diagonal are close to zero.
Figure 6 shows the posterior model correlation matrices for
oy, o4 and cj,.The correlation is equal to 1 only for the
components of the matrices main diagonal and the others
are almost close to zero .

The L-curve was also calculated for this well, but the results
generated by this parameter will not be presented in this
work for the same reason why they were not shown for well

1-BAS-68.
Conclusions

From statistical and theoretical relationships among
well logs as neutron porosity, density and caliper, a
regularization technique based on the Bayesian philosophy
that allows the prediction of the sonic log was proposed
and tested on a real data set. The procedure is simple
and suitable for application. Three different regularization
parameters were used in order to estimate the P-wave
velocity log. The choice of an appropriate parameter plays
a role in the inversion process quality. The posterior
model covariance and correlation matrices were also
computed and discussed, showing that a model for any
depth is almost independent from the other models. The
comparison between the outcomes and the sonic well log
shows that the method is operative and efficient.
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Figure 1: The caliper and the sonic well logs along with the predicted sonic logs related to well 1-BAS-68 for (a) 0',34 =0.0001,
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Figure 2: Posterior model covariance matrices related to well 1-BAS-68 for (a) o, = 0.0001, (b) 67 = 1 and (c) o, = 10000.
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Figure 3: Posterior model correlation matrices related to well 1-BAS-68 for (a) GAI,, =0.0001, (b) o}%l =1and (c) c,%l = 10000.
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Figure 4: The caliper and the sonic well logs along with the predicted sonic logs related to well 1-BAS-80 for (a) 6,34 =0.0001,
(b) 6 = 1 and (c) o}, = 10000.
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Figure 5: Posterior model covariance matrices related to well 1-BAS-80 for (a) 0,34 =0.0001, (b) G,%,, =1and (c) 61?4 = 10000.
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Figure 6: Posterior model correlation matrices related to well 1-BAS-80 for (a) 01\14 =0.0001, (b) 61‘24 =1and (c) 0]%4 = 10000.
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